Equitable Total Coloring of Direct Product of Path and Cycle

S. Moidheen Aliyar1, S. Manimaran2 and K. Manikandan3

1Department of Mathematics,
The New College, Chennai-600 014, Tamilnadu, INDIA.
2Department of Mathematics,
RKM Vivekanandha College, Chennai-600 004, Tamilnadu, INDIA.
3Department of Mathematics,
Guru Nanak College, Chennai-600 042, Tamilnadu, INDIA.
email: 1moideenaliyar@gmail.com, 2ponsumanimar@gmail.com
and 3kmanimaths1987@gmail.com

(Received on: June 21, 2019)

ABSTRACT

An equitable total coloring of graph G is an assignment of colors to all the elements (vertices, edges) of graph G such that adjacent or incident elements receive the different color and for any two color classes different by at most one. In this paper, we obtain the exact expressions for the equitable total coloring of direct product of path and cycle.

Mathematics Subject Classification: 05C15.

Keywords: Equitable total coloring, Tensor product, Direct product and cycle graph.

1. INTRODUCTION

All graphs considered finite, simple and undirected. Let $G = (V(G), E(G))$ be a graph with the vertex set $V(G)$ and the edge set $E(G)$ respectively. A total coloring of graph G is a coloring of the vertices and the edges of G such that any two adjacent or incident elements (vertices, edges) have different color. The total chromatic number of a graph G denoted by $\chi''(G)$, is the minimum number of colors that required in a total coloring. Total Coloring Conjecture formulated by Behzad1 and Vizing9, says that $\Delta(G) + 1 \leq \chi''(G) \leq \Delta(G) + 2$ for a simple graph G. A total coloring of graph G is said to be equitable if the number of elements (vertices, edges) are colored with each color differ by at most one. The minimum number of colors that required for an equitable total coloring of graph G is called the equitable total chromatic number of G and is denoted by $\chi''_e(G)$. In 1973, Meyer4 introduced the concepts
of an equitable coloring and the equitable chromatic number. An equitable total coloring of \(G \) is a mapping \(f: V(G) \cup E(G) \to \mathcal{C} \), where \(\mathcal{C} \) is a set of colors satisfying the following conditions.

1. \(f(u) \neq f(v) \) for any two adjacent vertices \(u, v \in V(G) \),
2. \(f(e) \neq f(e') \) for any two adjacent edges \(e, e' \in E(G) \),
3. \(f(v) \neq f(e) \) for any vertex \(v \in V(G) \) and any edge \(e \in E(G) \) incident to \(v \) and
4. \(| |T_i| - |T_j| | \leq 1; i, j = 1, 2, ..., k. T_i = V_i \cup E_i; 1 \leq i \leq k. \)

In 1994, Fu\(^5\) investigated the concept of an equitable total coloring and the equitable total chromatic number. He raised the conjecture that for any simple graph \(G \), then \(\chi_e^T(G) \leq \Delta(G) + 2 \). Graph products were first defined by Sabidussi\(^8\) and Vizing\(^10\). A lot of work was done on various topics related to graph product, but on the other hand there are many open questions. Pranaver and Zmazek\(^7\) proved that total chromatic number of \((P_m \times P_n) \) and \((C_m \times C_n) \) are 5. Geetha and Somasundaram\(^3\) proved the TCC for direct product of some graphs.

In this paper, we found the expressions for the equitable total chromatic number of direct product of path and cycle.

2. RESULTS AND DISCUSSION

Definition 2.1: The direct product of \(G \) and \(H \) is a graph, denoted as \(G \times H \), whose vertex set is \(V(G) \times V(H) \) and for which vertices \((g, h) \) and \((g', h') \) are adjacent precisely if \(gg' \in E(G) \) and \(hh' \in E(H) \). In other words, \(V(G \times H) = \{(g, h) | g \in V(G) \text{ and } h \in V(H)\} \) and \(E(G \times H) = \{(g, h), (g', h') | gg' \in E(G) \text{ and } hh' \in E(H)\} \).

Theorem 2.1: For any cycle graph \(C_n \),
\[
\chi_e^T(C_n) = \begin{cases}
\Delta(G) + 1, & \text{if } n \equiv 0 \text{ mod } 3 \\
\Delta(G) + 2, & \text{otherwise.}
\end{cases}
\]

Theorem 2.2: The equitable total chromatic number of \(P_n \times P_m \), for all \(n, m \geq 3 \) and \(n, m \in \mathbb{Z}^+ \)
\[
\chi_e^T(P_n \times P_m) = \begin{cases}
\Delta(P_n \times P_m) + 1, & n = 4 + 5k, m \geq 3, k = 0, 1, 2, \ldots \\
\Delta(P_n \times P_m) + 2, & \text{for all } n, m \geq 3
\end{cases}
\]

Proof: Let \(P_n \) be path on \(n \) vertices \(\{u_1, u_2, u_3, ..., u_n\} \) and \(P_m \) be path on \(m \) vertices \(\{v_1, v_2, v_3, ..., v_m\} \) respectively. Then the direct product of \((P_n \times P_m) \) divide into two cases as follows:

Case (1) : If \(n = 4 + 5k, m \geq 3 \)
Here, \(\Delta(P_n \times P_m) + 1 \) is the equitable total chromatic number of \((P_n \times P_m) \). In this graph of direct product having \(n(R_1, R_2, ..., R_n) \) rows and \(m(C_1, C_2, ..., C_m) \) columns.

Assign the colors to all the vertices of \(R_1, R_{11}, ..., R_{n-3} \) with the color 1 and all the vertices of \(R_2, R_7, R_{12}, ..., R_{n-2} \) with the color 2 and all the vertices of \(R_3, R_8, R_{13}, ..., R_{n-1} \) with the color 3 and all the vertices of \(R_4, R_9, R_{14}, ..., R_n \) with the color 4 and all the vertices of \(R_5, R_{10}, R_{15}, ..., R_{n-4} \) with the color 5. To color the edges between \((R_2, R_3) \) assign the colors of \(R_1 \) and \(R_4 \). Then to color the edges between \((R_3, R_4) \) assign the colors of \(R_2 \) and \(R_5 \). Use the above process to color all the edges between \(((R_4, R_5), (R_5, R_6), \ldots, (R_{n-2}, R_{n-1})) \).
Finally, we color the remaining uncolored edges between \((R_1, R_2)\) and \((R_{n-1}, R_n)\) using the missing colors which satisfies the condition of equitably total colorable.

Hence, \(\chi''_c(P_n \times P_m) = \Delta (P_n \times P_m) + 1\).

Case (2): For all \(n, m \geq 3\)

Here, \(\Delta (P_n \times P_m) + 2\) is the equitable total chromatic number of \((P_n \times P_m)\). In this graph of direct product having \(n(R_1, R_2, ..., R_n)\) rows and \(m(C_1, C_2, ..., C_m)\) columns. We divide \(\Delta (P_n \times P_m) + 2\) into three equal color classes, say \(X_1, X_2\) and \(X_3\) respectively.

Subcase (2.1): If \(n \equiv 0 \pmod{3}\)

Color all the edges between \(R_1\) and \(R_2\) using \(X_1\) color and the edges between \(R_2\) and \(R_3\) using \(X_2\) color and the edges between \(R_3\) and \(R_4\) using \(X_3\) color. Then we color the remaining edges between \((R_4, R_5), (R_5, R_6), ..., (R_{n-1}, R_n)\) of \((P_n \times P_m)\) using the colors of \(X_1, X_2\) and \(X_3\) cyclically. Now at each vertex in a row, we have exactly one missing color class.

Using the missing color class, we give color to all the vertices in \(R_2, R_3, ..., R_{n-1}\). Finally, we color the remaining vertices of \(R_1\) using \(X_2\) and \(X_3\) colors and vertices of \(R_n\) using \(X_1\) and \(X_3\) colors according to satisfying the equitably total colorable conditions.

Subcase (2.2): If \(n \equiv 1 \pmod{3}\)

By subcase 2.1, assign colors to all the edges between \((R_1, R_2), (R_2, R_3), ..., (R_{n-1}, R_n)\) of \((P_n \times P_m)\). Now, we color all the vertices of \(R_2, R_3, ..., R_{n-1}\) using the colors of \(X_3, X_1\) and \(X_2\) cyclically. Finally, we color the remaining uncolored vertices of \(R_1\) using \(X_2\) and \(X_3\) colors and vertices of \(R_n\) using \(X_1\) and \(X_2\) colors according to satisfying the equitably total colorable conditions.

Subcase (2.3): If \(n \equiv 2 \pmod{3}\)

Assign \(X_1\) color to all the edges between \(R_1\) and \(R_2\) and \(X_2\) color to all the edges between \(R_2\) and \(R_3\) and \(X_3\) color to all the edges between \(R_3\) and \(R_4\). Then we color the remaining edges between \((R_4, R_5), (R_5, R_6), ..., (R_{n-2}, R_{n-1})\) of \((P_n \times P_m)\) using the colors of \(X_1, X_2\) and \(X_3\) cyclically. Now at each vertex in a row, we have exactly one missing color class.

Using the missing color class, we give color to all the vertices of \(R_2, R_3, ..., R_{n-2}\). Then to color all the vertices of \(R_{n-1}\) assign the colors of \(R_{n-2}\) and assign \(X_2\) color to all the edges between \((R_{n-1}, R_n)\). Finally, we color the remaining vertices of \(R_1\) using \(X_2\) and \(X_3\) colors and vertices of \(R_n\) using \(X_1\) and \(X_3\) colors according to satisfying the equitably total colorable conditions.

Therefore, The equitable total chromatic number of \((P_n \times P_m)\) is \(\Delta (P_n \times P_m) + 2\).

Theorem 2.3: The equitable total chromatic number of \(C_n \times C_m\), for all \(n \geq 3\) and \(n, m \in Z^+\)

\[
\chi''_c(C_n \times C_m) = \begin{cases} \\
\Delta (C_n \times C_m) + 1, & n = 5k, \quad k = 1, 2, 3, ... \\
\Delta (C_n \times C_m) + 2, & n = 2l, 3k, \quad l = 2, 3, 4, ...
\end{cases}
\]

Proof: Let \(C_n\) be the cycle on \(n\) vertices \(\{u_1, u_2, u_3, ..., u_n\}\) and \(C_m\) be the cycle on \(m\) vertices \(\{v_1, v_2, v_3, ..., v_m\}\) respectively. Then the direct product of \((C_n \times C_m)\) divide into two cases as follows:
Case (1) : If $n = 5k$ and $m \geq 3$
Here, $\Delta \left(C_n \times C_m\right) + 1$ is the equitable total chromatic number of $(C_n \times C_m)$. In this graph of direct product having $n(R_1, R_2, ..., R_n)$ rows and m $(C_1, C_2, ..., C_m)$ columns.
Assign the colors to all the vertices of $R_1, R_6, R_{11}, ..., R_{n-4}$ with the color 1 and all the vertices of $R_2, R_7, R_{12}, ..., R_{n-3}$ with the color 2 and all the vertices of $R_3, R_8, R_{13}, ..., R_{n-2}$ with the color 3 and all the vertices of $R_4, R_9, R_{14}, ..., R_{n-1}$ with the color 4 and all the vertices of $R_5, R_{10}, R_{15}, ..., R_n$ with the color 5. To color the edges between (R_1, R_2) assign the colors of R_n and R_3. Then to color the edges between (R_2, R_3) assign the colors of R_1 and R_4. Use the above process to color all the edges between $((R_3, R_4), (R_4, R_5), ..., (R_n, R_1))$ which satisfies the condition of equitably total colorable.
Hence, $\chi''(C_n \times C_m) = \Delta \left(C_n \times C_m\right) + 1$.

Case (2):
Here, $\Delta \left(C_n \times C_m\right) + 2$ is the equitable total chromatic number of $(C_n \times C_m)$. In this graph of direct product having $n(R_1, R_2, ..., R_n)$ rows and m $(C_1, C_2, ..., C_m)$ columns. We divide $\Delta \left(C_n \times C_m\right) + 2$ into three equal color classes, say X_1, X_2 and X_3 respectively.

Subcase (2.1) : If $n = 2l$ and $m \geq 3$
Color all the vertices of $R_1, R_3, R_5, ..., R_{n-1}$ using one of the color of X_1 and assign remaining color of X_1 to all the vertices of $R_2, R_4, R_6, ..., R_n$. Now, color all the edges between R_1 and R_2 using X_2 color and the edges between R_2 and R_3 using X_3 color. Then we color all the edges between $((R_3, R_4), (R_4, R_5), ..., (R_n, R_1))$ using X_2 and X_3 cyclically which satisfies the condition of equitably total colorable.

Subcase (2.2) : If $n = 3k$ and $m \geq 3$
Color all the edges between R_1 and R_2 using X_1 color and the edges between R_2 and R_3 using X_2 color and the edges between R_3 and R_4 using X_3 color. Then we color the remaining edges between $((R_4, R_5), (R_5, R_6), ..., (R_m, R_1))$ of $(C_n \times C_m)$ using the colors of X_1, X_2 and X_3 cyclically. Now, we color all the vertices of $R_1, R_2, ..., R_n$ using the colors of X_2, X_3 and X_4 cyclically which satisfies the condition of equitably total colorable.
Therefore, The equitable total chromatic number of $(C_n \times C_m)$ is $\Delta \left(C_n \times C_m\right) + 2$.

Theorem 2.4: The equitable total coloring of $P_n \times C_m$, for all $n, m \geq 3$ and $n, m \in Z^+$
$\chi''(P_n \times C_m) = \begin{cases} \Delta \left(P_n \times C_m\right) + 1, & n = 4 + 5k, m \geq 3, k = 0,1,2, \ldots; \\ \Delta \left(P_n \times C_m\right) + 2, & for all n, m \geq 3 \end{cases}$

Proof: Let P_n be the path on n vertices $\{u_1, u_2, u_3, ..., u_n\}$ and C_m be the cycle on m vertices $\{v_1, v_2, v_3, ..., v_m\}$ respectively. Then the direct product of $(P_n \times C_m)$ divide into two cases as follows:

Case (1): If $n = 4 + 5k$ and $m \geq 3$
Here, $\Delta \left(P_n \times C_m\right) + 1$ is the equitable total chromatic number of $(P_n \times C_m)$. In this graph of direct product having $n(R_1, R_2, ..., R_n)$ rows and m $(C_1, C_2, ..., C_m)$ columns.
Colors all the vertices of $R_1, R_6, R_{11}, ..., R_{n-3}$ with the color 1 and all the vertices of $R_2, R_7, R_{12}, ..., R_{n-2}$ with the color 2 and all the vertices of $R_3, R_8, R_{13}, ..., R_{n-1}$ with the color
3 and all the vertices of $R_4,R_9,R_{14},\ldots,R_n$ with the color 4 and all the vertices of $R_5,R_{10},R_{15},\ldots,R_{n-4}$ with the color 5. To color the edges between (R_2,R_3) assign the colors of R_1 and R_4. Then to color the edges between (R_3,R_4) assign the colors of R_2 and R_5. Use the above process to color all edges between $((R_4,R_5),(R_5,R_6),\ldots,(R_{n-2},R_{n-1}))$. Finally, we color the uncolored edges between (R_1,R_2) and (R_{n-1},R_n) using the remaining colors which satisfies the condition of equitably total colorable. Hence, $\chi''_t(P_n \times C_m) = \Delta (P_n \times C_m) + 1$.

Case (2): For all $n,m \geq 3$

Here, $\Delta (P_n \times C_m) + 2$ is the equitable total chromatic number of $(P_n \times C_m)$. In this graph of direct product having $n(R_1,R_2,\ldots,R_n)$ rows and $m(C_1,C_2,\ldots,C_m)$ columns. We divide $\Delta (P_n \times C_m) + 2$ into three equal color classes, say X_1,X_2 and X_3 respectively.

Subcase (2.1): If $n \equiv 0(\text{mod } 3)$ and $m = 3$

Color all the vertices of R_2 using one of the color of X_3 and assign remaining color of X_3 to all the vertices of R_{n-1}. Then color all the vertices of R_3,R_4,\ldots,R_{n-2} using the colors of X_1, X_2 and X_3 cyclically. Now, color all the edges between R_1 and R_2 using X_1 color and the edges between R_2 and R_3 using X_2 color and the edges between R_3 and R_4 using X_3 color. Then the remaining edges between $(R_4,R_5),(R_5,R_6),\ldots,(R_{n-1},R_n)$ of $(P_n \times C_m)$ using the colors of X_1, X_2 and X_3 cyclically. Finally, color the remaining vertices in R_3 and R_n using $\Delta (P_n \times C_m) + 1$ colors according to satisfying the equitably total colorable condition.

Subcase (2.2): If $n \equiv 0(\text{mod } 3)$ and $m > 3$

Color all the edges between R_1 and R_2 using X_1 color and the edges between R_2 and R_3 using X_2 color and the edges between R_3 and R_4 using X_3 color. Then we color all the remaining edges between $(R_4,R_5),(R_5,R_6),\ldots,(R_{n-1},R_n)$ of $(P_n \times C_m)$ using the colors of X_1, X_2 and X_3 cyclically. Now at each vertex in a row, we have exactly one missing color classes. Using the missing color class, we give color to all the vertices in R_2,R_3,\ldots,R_{n-1}. Finally, we color the remaining uncolored vertices of R_1 using X_2 and X_3 colors and vertices of R_n using X_1 and X_3 colors according to satisfying the equitably total colorable condition.

Subcase (2.3): If $n \equiv 1(\text{mod } 3)$ and $m \geq 3$

By subcase 2.2, assign colors to all the edges between $(R_1,R_2),(R_2,R_3),\ldots,(R_{n-1},R_n)$ of $(P_n \times C_m)$. Now, we color all the vertices of R_2,R_3,\ldots,R_{n-1} using the colors of X_3, X_1 and X_2 cyclically. Finally, we color the remaining uncolored vertices of R_1 using X_2 and X_3 colors and vertices of R_n using X_1 and X_2 colors according to satisfying the equitably total colorable condition.

Subcase (2.4): If $n \equiv 2(\text{mod } 3)$ and $m = \text{even}$

Assign X_1 color to all the edges between R_1 and R_2 and X_2 color to all the edges between R_2 and R_3 and X_3 color to all the edges between R_3 and R_4. Then we color all the remaining edges between $(R_4,R_5),(R_5,R_6),\ldots,(R_{n-2},R_{n-1})$ of $(P_n \times C_m)$ using the colors of X_1, X_2 and X_3 cyclically. Now, we color all the vertices of R_2,R_3,\ldots,R_{n-2} using the colors of X_3, X_1 and X_2 cyclically. Then assign X_1 colors to all the vertices of R_{n-1} and assign X_2
color to all the edges between \((R_{n-1}, R_n)\). Finally, we color the remaining vertices of \(R_1\) using \(X_2\) and \(X_3\) colors and vertices of \(R_n\) using \(X_1\) and \(X_3\) colors according to satisfying the equitably total colorable condition.

Subcase (2.5): If \(n \equiv 2(\text{mod}\ 3)\ and m = odd

Color all the edges between \(R_1\) and \(R_2\) using \(X_1\) color and the edges between \(R_2\) and \(R_3\) using \(X_2\) color and the edges between \(R_3\) and \(R_4\) using \(X_3\) color. Then we color the remaining edges between \((R_4, R_5), (R_5, R_6), \ldots, (R_{n-3}, R_{n-2})\) of \((P_n \times C_m)\) using the colors of \(X_1, X_2, X_3\) cyclically. Now, we color all the vertices of \(R_2, R_3, \ldots, R_{n-3}\) using the colors of \(X_3, X_1, \text{and } X_2\) cyclically. Then, color the vertex of \(R_{n-2}\) using one of the color of \(X_1\) from \(C_1\) to \(C_{m-1}\) and use remaining color of \(X_1\) from \(C_{m+1}\) to \(C_m\) and color \(X_2\) using one of the color of \(X_3\). Then, color the vertex of \(R_{n-1}\) using one of the color of \(X_1\) from \(C_2\) to \(C_{m-1}\) and use remaining color of \(X_1\) from \(C_{m+2}\) to \(C_{m-1}\) and color \(X_1, C_m\) and \(X_{m+1}\) using \(X_2\) colors suitably. Now, we color the edges between \((R_{n-2}, R_{n-1})\) using \(X_1\) and \(X_3\) colors and the edges between \((R_{n-3}, R_n)\) using \(X_1\) and \(X_2\) colors. Finally, we color the remaining vertices of \(R_1\) using \(X_2\) and \(X_3\) colors and vertices of \(R_n\) using \(X_1\) and \(X_3\) colors according to satisfying the equitably total colorable condition.

Therefore, The equitable total chromatic number of \((P_n \times C_m)\) is \(\Delta (P_n \times C_m) + 2\).

CONCLUSION

In this paper, we have obtained the tight bound an equitable total chromatic number of the direct product of path by path and path by cycle. Further, the extension of this result for strong product of path, cycle and complete graph.

REFERENCES