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ABSTRACT 

 

The present paper is an extension of the work of  Ghosh 

et al.
15

 by generalizing the birth and death rates. It is assumed that 

the density of carrier population increases with the increase in the 

cumulative density of discharges by the human population in to 

the environment. The growth of carrier population obeys simple 

logistic law. The generalization of the model is done for the 

following two cases: (i) the rate of cumulative environmental 

discharges is constant and (ii) the rate of cumulative 

environmental discharges is a function of total population density. 
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1. INTRODUCTION  

 

 Infectious diseases in the 

environment are spread by direct contact 

between susceptible and infective. Some of 

these infectious diseases in the environment 

are transmitted to the human population by 

insects or other carriers (vectors). The 

infectious diseases spread by carriers in the 

environment include flies, ticks, mites and 

snails
2,3,4,7

. For example, air-born carriers or 

bacteria spread diseases such as tuberculosis 

and measles; while water-born carriers or 

bacteria are responsible for the spread of 

dysentery, diarrhoea, etc.
9, 20

. The modelling 

and analysis of infectious diseases have been 

done by many workers, see for example
1, 6, 11, 

12, 17, 21
. In particular Hethcote

8
 discussed an 

epidemic model in which carrier population 

is assumed to be constant. But in general the 

size of the carrier population varies and 

depends on the natural conditions of the 

environment as well as on various human 

related factors. Various kinds of household 

and other wastes, discharged into the 

environment is residential areas of 
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population, provide very conducive

environment for the population growth of 

some of these carriers. This enhances the 

chance of carrying more bacteria from 

infective to the susceptible leading to fast 

spread of carrier dependent infectious 

diseases. Ghosh et al.
14

 studied the spread of 

carrier dependent infectious diseases with 

environmental effects using variable carrier 

population. The density of carrier population 

further increases as the human population 

density increases. Gao and Hethcote

analyzed an infectious diseases model with 

logistic population growth. Zhou and 

Hethcote
10

 have studied few models of 

infectious diseases using various kinds of 

demographics. The present paper is the 

generalization of Ghosh et al

they have studied the effect of variable 

carrier population caused by environmental 

discharges on the spread of infectious 

diseases. 
 

2. GENERALIZED MODEL 
 

Let us consider an SIS model in 

which the growth of human population is 

logistic. The disease is assumed to spread by 

infective as well as by carriers (vecto

the environment. The total population 

density  is divided into two classes; 

susceptible  and infective 

assumed that all susceptible living in the 

habitat are affected by a carrier population 

of density , which grows logistically 

with given intrinsic growth rate and carrying 

capacity. The growth rate of its density is 

further assumed to increase with the increase 

in the cumulative density of discharges by 

the human population into the environ

The birth as well as death rate are density 

dependent in such a manner that the birth 
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population, provide very conducive 

environment for the population growth of 

some of these carriers. This enhances the 

chance of carrying more bacteria from 

infective to the susceptible leading to fast 

spread of carrier dependent infectious 

studied the spread of 

rier dependent infectious diseases with 

environmental effects using variable carrier 

population. The density of carrier population 

further increases as the human population 

density increases. Gao and Hethcote
13

 

analyzed an infectious diseases model with 

gistic population growth. Zhou and 

have studied few models of 

infectious diseases using various kinds of 

demographics. The present paper is the 

et al.
15

, in which 

they have studied the effect of variable 

n caused by environmental 

discharges on the spread of infectious 

2. GENERALIZED MODEL  

Let us consider an SIS model in 

which the growth of human population is 

logistic. The disease is assumed to spread by 

infective as well as by carriers (vectors) in 

the environment. The total population 

is divided into two classes; 

and infective . It is 

assumed that all susceptible living in the 

habitat are affected by a carrier population 

, which grows logistically 

with given intrinsic growth rate and carrying 

capacity. The growth rate of its density is 

further assumed to increase with the increase 

in the cumulative density of discharges by 

the human population into the environment. 

The birth as well as death rate are density 

dependent in such a manner that the birth 

rate decreases and death rate increases as the 

population density increases towards its 

carrying capacity
13

. 

The density dependent population 

growth is given by the logistic equation

 

 
 

where  is the population size at any 

time  is the positive rate constant and 

is the carrying capacity of the 

environment
5,13

. 

The generalization of the model framed by 

Ghosh et al.
15

 is done by 

generalized birth and death rates represented 

by 

 and 

respectively for  and the parameter, 

. This generalization of birth and death 

rates have been already used by Sing 

in which they have generalized the model of 

Ghosh et al.
16

.  

When  the model could be called a 

simple generalized logistic birth model as all 

of its restricted growth is due to a decreasing 

birth and the death rate is constant. 

Similarly, when , it could be called a 

generalized logistic death model as all of the 

restricted growth is due to an increasing 

death rate and birth rate constant.

The generalized mathematical model can be 

represented by the following set of equations
 

 

 

 
 

 

81) 

rate decreases and death rate increases as the 

population density increases towards its 

The density dependent population 

logistic equation 

is the population size at any 

is the positive rate constant and 

is the carrying capacity of the 

The generalization of the model framed by 

is done by using the 

generalized birth and death rates represented 

 , 

and the parameter, 

. This generalization of birth and death 

already used by Sing et al.
18

 

have generalized the model of 

the model could be called a 

simple generalized logistic birth model as all 

of its restricted growth is due to a decreasing 

birth and the death rate is constant. 

, it could be called a 

generalized logistic death model as all of the 

restricted growth is due to an increasing 

death rate and birth rate constant. 

The generalized mathematical model can be 

represented by the following set of equations 
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with initial conditions: 
 

 

Here  is the cumulative density of 

environmental discharges conducive to the 

growth of carrier population; 

natural birth and death rates; 

the growth rate constant; 

capacity of the human population density in 

the natural environment;  

transmission coefficients due to infective 

and carrier population respectively; 

disease related death rate constant and 

the recovery rate constant  i.e. the rate at 

which individual recovers and moves to the  

susceptible class again from the infective 

class. The constant L is the carrying capacity 

of the carrier population in the natural 

environment; s is its intrinsic growth rate; 

is the death rate of carriers due to control 

measures, where s >  s1 

growth rate coefficient of the carrier 

population due to the cumulati

environmental discharge rate 

human population density dependent (an 

increasing function of N) and 

depletion rate coefficient of the 

environmental discharges. In writing the 

model (1), we use the term 

coefficient in the sense as used by Anderson 

and May
19

, which means that new cases of 

disease occurs at the rates 

due to interaction of susceptible with 

infective and carriers respectively. It is easy 

to note that the above model is well

the region of attraction  given by

The  model (1) is  analyzed for the following
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    (1) 

 

 

is the cumulative density of 

environmental discharges conducive to the 

growth of carrier population;  and  are 

 is 

 is the carrying 

capacity of the human population density in 

 and  are the 

transmission coefficients due to infective 

and carrier population respectively;  is 

disease related death rate constant and  is 

the recovery rate constant  i.e. the rate at 

which individual recovers and moves to the  

susceptible class again from the infective 

is the carrying capacity 

rier population in the natural 

is its intrinsic growth rate;  

is the death rate of carriers due to control 

1 the per capita 

growth rate coefficient of the carrier 

population due to the cumulative 

environmental discharge rate Q(N), which is 

human population density dependent (an 

) and 0 is the 

depletion rate coefficient of the 

environmental discharges. In writing the 

model (1), we use the term transmission 

coefficient in the sense as used by Anderson 

, which means that new cases of 

XY and XC 

due to interaction of susceptible with 

infective and carriers respectively. It is easy 

e that the above model is well-posed in 

given by 

analyzed for the following 

two cases: 

i. The rate of cumulative environmental 

discharge Q is a constant ,and

ii. The rate of cumulative environmental 

discharge Q is a function of the 

population density. 

 

3. CASE I: when Q is constant Q

 

Since S + I =N, it is sufficient to 

consider the following equivalent system of 

(1)  

 = SI + SC –  

[  

 =  

 =  

 = �� � ���                 

 

From the last two equations of system (2) we 

note that 

 
 

In order to study the behavior of the 

(2) it is reasonable to consider the following 

equations of system (2): 
 

 =

 =    
 

where Cm increases as the discharge rate 

increases. 

 

3.1. Stability Analysis: Let’s consider the 

system (3) as: 

F1

 424 

81) 

The rate of cumulative environmental 

is a constant ,and 

The rate of cumulative environmental 

is a function of the 

Qa  

=N, it is sufficient to 

consider the following equivalent system of 

 

     (2) 

From the last two equations of system (2) we 

 

In order to study the behavior of the system 

(2) it is reasonable to consider the following 

 

    (3) 

increases as the discharge rate Qa 

Let’s consider the 
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F2 =   

 

The result of the equilibrium analysis is 

stated in the following theorem.

 

3.1.1. Theorem: There exists following two 

equilibrium points of system (3)

(i) E1(0,0) and  (ii)   E2(  ),which exists if 

. 

 

Proof: The existence of E1 (0, 0) is obvious. 

The existence of E2 is shown as fallows. 

Setting the derivatives of (3) equal to zero, 

we get   

    

 = 0      

from equation (5) we have 
 

I=               

also equation (4) implies 

                             

Clearly in  plane (6) is an ellipse 

passing through (0, 0) and (K, 0) with vertex 

given by 

 

 
 

The variation matrix of system (3) is given 

by 

Where,  
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(0, 0) is obvious. 

is shown as fallows. 

Setting the derivatives of (3) equal to zero, 

                             
    (4) 

    (5) 

    (6) 

 
    (7) 

plane (6) is an ellipse 

passing through (0, 0) and (K, 0) with vertex 

variation matrix of system (3) is given 

 

 

 

The variation matrix  at 

by  

 
its characteristic equation is given by

 

 

or              

 

where         

so the equilibrium is stable if  

 

 
 

i.e. if          

clearly for  the system is unstable.

The variation matrix  at 

by  

 
its characteristic equation is given by

where,      

 

where,       
 

 

              
 

where,      

 

 

81) 

 is give 

its characteristic equation is given by 

 

 

the system is unstable. 

 is given 

uation is given by 
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Hence by Routh-Hurwitz stability criteria, 

the above system is locally asymptotically 

stability if  and 

the system is unstable. 

 

4. CASE II: When Q is variable
 

When the cumulative rate of 

environment discharges  

total population density, we have

In this system, we consider the following 

equations of system (1), where

 
 

    

 

4.1. Stability Analysis: In order to find 

equilibrium points of system (8) we consider 

the following equations as  
 

 

  
 

 
 

        
 

The result of the equilibrium analysis is 

stated in the following theorem.

 

4.1.1 Theorem: After solving the above 

equations we will get the following 

equilibrium points, namely: 
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Hurwitz stability criteria, 

the above system is locally asymptotically 

. Otherwise 

is variable 

When the cumulative rate of 

 is a function of 

total population density, we have 

In this system, we consider the following 

equations of system (1), where  

    (8) 

In order to find 

equilibrium points of system (8) we consider 

   (9) 

  (10) 

     (11) 

  (12) 

The result of the equilibrium analysis is 

theorem. 

After solving the above 

equations we will get the following 

 

(i) ,   
 

(ii) ,   
 

(iii) ,  

where  and  
 

(iv) , which exists only 

if           

i.e.     

i.e.   

 

Proof: let’s consider the equations of system 

(8) as follows: 

     

 

The variation matrix M at (I, N, B, E) 

corresponding to system (13) is given by
 

 
 

where  

 
 

The variation matrix M1 at  

given by 

 426 

81) 

 ,   

, which exists only  

          

      

                                                                         

let’s consider the equations of system 

         
 (13) 

(I, N, B, E) 

corresponding to system (13) is given by 

   

   

 

  is 
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its characteristic equation is given by: 

which has at least one Eigen value positive. 

Hence the equilibrium point    is 

unstable. 

The variation matrix M2 at    

is given by 
 

 

  
 

its characteristic equation is given by: 

 

 
which gives  

                 

or               

where,       

and,  

 

Hence by Routh-Hurwitz stability criteria    is stable if  

    
otherwise the system is unstable. 

The variation matrix M3 at     is given by  

 
its characteristic equation is given by  
 

 

or                 

which has at least one eigen value positive. Hence the system is unstable. i.e.    . 
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Thus    is unstable. 

The variation matrix M4 at    is given by  

  
its characteristic equation is given by: 

   

or          

where 

            

 

 

 
 

Hence by Routh-Hurwitz stability criteria, 

the above system is locally asymptotically 

stable if the fallowing conditions are 

satisfied: 

,  

  otherwise  

the system is unstable. 
 

5. CONCLUSION 
 

In this paper an SIS model for 

carrier-dependent infectious diseases caused 
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by direct contact of susceptible with 

infective as well as by carriers is proposed 

and analysed. We have generalized the 

model for both the cases: first, the 

cumulative rate of environmental discharges 

is constant and the second is cumulative rate 

of environmental discharge is function of 

total population density. The equilibrium 

analysis is presented for the generalised 

model for both cases and it is seen that the 

local stability of the nontrivial equilibria in 

both the cases is guaranteed only under 

certain conditions.   
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