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ABSTRACT 

 

This paper presents the analytical solutions for the surge radiation problem 

by a floating single hollow cylindrical structure in a channel of finite width. We used 

the channel multipoles approach in order to find the solutions including wall 

conditions. On the basis of channel multipoles, separation of variables methods, we 

derived the surge radiated velocity potentials in the identified subdomains.  Moreover, 

by using appropriate matching conditions between virtual and physical boundaries of 

the subdomains, we deduce a system of linear equations to find the unknown 

coefficients. From the expressions of radiated velocity potentials, we obtain the 

expressions of hydrodynamic coefficients, namely, added mass and damping 

coefficients due to surge oscillation of hollow cylindrical structure.    
 

MSC (2000): 76B07, 76B15. 
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1.  INTRODUCTION  

 

Many researchers have approached theoretically to develop the problem of radiation 

of water wave by using different floating structure. Our present investigation is also related to 

the radiation problem of water wave in channel by a vertical hollow cylinder under the 

assumptions of linearized water wave theory.  Abramowitz and Stegun1   gave the different 

recurrence relations and values of the mathematical functions. Bharatkumar et al.2 used a 

Green's function approach together with the method of images to compute first-order forces 

http://www.compmath-journal.org/
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and pressures on pairs of circular solid cylinders in a channel. Bhatta and Rahman3 discussed 

interactions between single bodies with different cross-sections and waves at uniform depth. 

Bhattacharjee and Soares4 analyzed the diffraction of water waves by a floating structure near 

a wall with step-type bottom topography. Buffer and Thomas5 used multipole method to 

compute reflection and transmission coefficients for array of cylinders in a channel. Hassan 

and Bora6,7 calculated hydrodynamic coefficients, i.e., added mass and damping coefficient 

and exciting forces for the two coaxial vertical geometrical shapes in the form of a pair of 

coaxial vertical cylinders. A useful method developed by Kashiwagi8 who was constructed 

three-dimensional Green's function which automatically satisfied the channel wall boundary 

condition. He also computed mean second-order drift forces on four truncated cylinders 

arranged in a square and compared his results with experimental data. Linton9, Linton and 

Evans10 and Mclver and Bennett11 gave how to used multipole method to find the solution of 

such problems. The use of multipoles also enabled the existence of the phenomenon of trapped 

modes near bodies in channels, previously undiscovered in the water wave context, to be 

proved. The same approach was used by Neelamani et al.12 who compared results for a 

particular two-cylinder geometry with those from experiments. Thomas13 used the method of 

images to solve scattering and radiation problems for a single vertical solid circular cylinder 

in a channel. Thorne14 derived multipoles in two and three dimensions which allow the 

straightforward solution of many problems. Mean drift loads on arrays of two and four 

cylinders extending throughout the water depth were also considered by Williams and 

Vazquez15 using a multipole method. Wu et al.16, 17 discussed the hydrodynamic coefficients 

and wave exciting force for a buoy over a convex body whose radius was larger or smaller 

than that of the buoy. Yeung and Sphaier18  have been used the method of images to solve 

scattering and radiation problems for a single vertical solid circular cylinder in a channel, in 

some cases extending throughout the entire fluid depth.  
 

           Our present investigation is also deals with the radiation of water waves by a vertical 

hollow cylinder which is placed at centre between the channel walls. In our present paper, we 

divide the complicated fluid domain into two parts as exterior and interior subdomains and the 

expression of radiated velocity potentials for each defined domain is being obtained by the 

method of channel multipole (Linton and Evans10 ) and separation of variables approach.  

 

2.  MATHEMATICAL FORMULATION  
 

Let us assume that the fluid is inviscid, homogeneous, incompressible and the motion 

is irrotational and small in amplitude. This allows us to consider linear water wave theory in 

the fluid of finite depth ℎ1.  We consider an infinitely long channel of uniform depth ℎ1 has 

parallel walls at a distance 2𝑑 apart.  The bottom of the  channel is horizontal and impermeable 

and the draft of the cylinder is at  𝑒1.  A right-handed Cartesian coordinate system 𝑂𝑥𝑦𝑧 is  

defined with the origin 𝑂  at the undisturbed free surface and the  𝑧 −axis coincide with the 

axis of the cylinder and pointing upwards, the 𝑥 −axis is located in the longitudinal plane of 

symmetry of the channel and while the 𝑦 −axis is perpendicular to the channel walls. We 
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divide the whole domain into two subdomains: an exterior domain defined by 𝑟 ≥ 𝑅,   0 < 𝜃 ≤

2𝜋,   −ℎ1 ≤ 𝑧 ≤ 0,  and the ineterior domain defined by 𝑟 ≥ 𝑅,   0 < 𝜃 ≤ 2𝜋,   −ℎ1 ≤ 𝑧 ≤ 0  

as shown in Fig. 1. The velocity potential can be written as Φ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒[𝜙(𝑥, 𝑦, 𝑧)𝑒−𝑖 𝜔 𝑡],   

where 𝑅𝑒 represents the real part of the complex quantity in bracket and 𝜙(𝑥, 𝑦, 𝑧) is the spatial 

part of the total velocity potential satisfied the following Laplace’s  equation: 
 

 
Fig. 1: Schematic diagram of the model 

 
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 +
𝜕2𝜙

𝜕𝑧2 = 0.                                                                                      (1) 

We use the following depth function corresponding to the bottom condition at 𝑧 = ℎ1 by using 

separation of variables method  

                                            𝑍𝑚(𝑧) = 𝑁𝑚
−1/2

 cos 𝜆𝑚(𝑧 + ℎ1),                                                       (2) 

where   𝑁𝑚
     =  

1

2 
 (1 +

sin 2 𝜆𝑚  ℎ1 

2 𝜆𝑚 ℎ1

).  

The eigenvalue 𝜆𝑚   can be determined from the dispersion relation  

𝜔2 = 𝑔 𝑘 tanh(𝑘 ℎ1) ;       𝜆0 = −𝑖 𝑘;  for   𝑚 = 0,                                                                    (3)                 

𝜔2 = −𝑔 𝜆𝑚 tan(𝜆𝑚 ℎ1);   for       𝑚 = 1, 2,3, …,  
where 𝑘 denotes the wavenumber of the fluid domain and  𝑔  is the acceleration due to gravity. 

On the basis of separation of variables method, use equation (2) in equation (1), we get the 

Helmholtz’s equation   
 

                          
𝜕2𝜙

𝜕𝑥2 +
𝜕2𝜙

𝜕𝑦2 − 𝜆𝑚
2 𝜙 = 0.                                                                                     (4) 

To convert into polar co-ordinates, we used the following relation:  
 

                                           𝑥 = 𝑟 cos 𝜃,   𝑦 = 𝑟 sin 𝜃.                                                                (5) 
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3. BOUNDARY-VALUE PROBLEM 

 

In this section, we setup the governing equation of the surge motion and the boundary 

conditions 
 

3.1. Governing equation and boundary conditions  
 

Suppose hollow cylindrical structure is  forced  to oscillate in surge motion only with 

unit amplitude and draft 𝑒1  in the channel of finite depth. So corresponding to small surge 

motion the radiated velocity potentials 𝜙𝑟𝑎𝑑 satisfy the following governing equation and 

boundary conditions: 
2 0,     in the  respective domain rad

                                                                                          (6) 

2

0, 0rad
rad z

z g
                                                                                                                 (7) 

10,rad z h
z

,                                                                                                                             (8) 

Body boundary condition in surge motion 

1 cos , ,  -e 0rad i r R z
r

,                                                                                              (9) 

lim 0rad
rad

r
r ik

r
,                                                                                                                    (10) 

and the channel walls condition is  

0,rad y d
y

.                                                                                                                             (11) 

Since we have divided fluid domain into two subdomains, one is interior and the other is 

exterior domain. Therefore, the solution of the boundary value problem to be obtained in these 

physical domain. Suppose  𝜙𝑟𝑎𝑑
𝑒𝑥𝑡   and  𝜙𝑟𝑎𝑑

𝑖𝑛𝑡   are the radiated velocity potentials in the exterior 

and interior domain respectively.  

 

4.  CHANNEL MULTIPOLE APPROACH TOWARDS SOLUTIONS  

 

Since we consider only the surge motions and the fluid region is symmetric about the 

centerline of the channel. Therefore, We need to consider only the symmetric part of the 

velocity potential. Hence let the multipoles is 𝜓𝑛,𝑚
𝑠   which is symmetric about the centerline 

of the channel and the multipoles 𝜓𝑛,𝑚
𝑠   will then satisfy Helmholtz’s equation, channel wall 

condition  (11) and the radiation condition. The channel multipoles are singular solutions of 

the Helmholtz equation which has singularity at origin. Therefore we can choose for 𝑚 = 0,  

the multipole 𝜓𝑛,𝑚
𝑠  is a singular part of 

1
 cos nnH kr and for 𝑚 ≥ 1, the multipole 𝜓𝑛,𝑚

𝑠  
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is a singular part of  cos nn mK r . Let us consider the integral representation for  

1
.  nH  and .  nK as   

  

                      (12) 

                     

        

            (13)  

 

where 
1

.  nH  is Hankel function of first kind of  order 𝑛  and .  nK is the modified Bessel 

function of second kind of order 𝑛.  By using change of variables, let 𝜔 = −𝜃 − 𝑖𝑢  and 

multiply both sides by 𝑖𝑛 𝑒𝑖𝑛𝜃.  The integral (12) becomes as,  

                     (14) 

 

 
 

we can rewrite the equation by restriction on the value of    as  

        

            (15) 

  

 

Combined equation (12) with similar expression where 𝑛 is replaced by – 𝑛 and considering 

the cases of even and odd values 𝑛 separately, it follow as: 

              (16) 

now we split the integral into four part, namely (−∞, 0), (0,
𝑖𝜋

2
) , (

𝑖𝜋

2
, 𝑖𝜋)  and  ( 𝑖𝜋, ∞ + 𝑖𝜋).   

𝐻2𝑛
(1)

= (−1)𝑛+1  [∫ 𝑒𝑘𝑦 sinh 𝑢 cos(𝑘𝑥 cosh 𝑢) 𝑒−2𝑛𝑢𝑑𝑢 + ∫ 𝑒𝑘𝑦 sinh 𝑢 cos(𝑘𝑥 cosh 𝑢) 𝑒−2𝑛𝑢𝑑𝑢 +
𝑖𝜋

2
0

0

−∞

∫ 𝑒𝑘𝑦 sinh 𝑢 cos(𝑘𝑥 cosh 𝑢) 𝑒−2𝑛𝑢𝑑𝑢 + ∫ 𝑒𝑘𝑦 sinh 𝑢 cos(𝑘𝑥 cosh 𝑢) 𝑒−2𝑛𝑢𝑑𝑢
  ∞+𝑖𝜋

𝑖𝜋

  𝑖𝜋
𝑖𝜋

2

]                 (17) 

=  𝐼1 + 𝐼2 + 𝐼3 + 𝐼4                                                          (18) 

Substituting  𝑢 = −𝛽, 𝑢 = 𝑖 (
𝜋

2
− 𝛼) ,     𝑢 = 𝑖(

𝜋

2
+ 𝛼)   and  𝑢 = (𝛽 + 𝑖 𝜋)   in  𝐼1, 𝐼2, 𝐼3  

and  𝐼4, respectively, then we have  

       (19) 

 

  

 

                                       (20) 
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                                (21) 

 

             (22) 

 

 

On summation of all  𝐼1, 𝐼2, 𝐼3,  𝐼4, we have  

 

 (23) 

Similarly, we can obtain the other integral as  

 

  (24) 

 

 

 

Now plugging  𝛼 = 𝑠𝑖𝑛−1𝑧,     𝛽 = 𝑐𝑜𝑠ℎ−1𝑧   into equation (23)-(24), then it gives  

 

          (25) 

 

       (26) 

 

 

where  

  

                  (27)    

    

                               

    

                                (28) 

                                 

  

                       (29) 

 
 

Use the method of Thorne14,  in order to satisfy the channel wall condition on  𝑦 = ±𝑑,  we 

need to add 𝐻2𝑛 cos 2𝑛 𝜃, a function of the form  
 

  

                                          (30)        

 

On apply channel wall condition, which gives  
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                 (31) 
  

Multipoles expansions can be written in terms of polar co-ordinates by using the following 

identities given by Abramowitz and Stegun1, 

 

              (32) 

  
 

             

              (33) 

 

             (34) 

 

  

                (35) 

 

hence the resultant expressions of multipoles for  𝑚 = 0   is given by 

   

            (36) 

    

and for 𝑚 ≥ 1,  the multipoles is given by  

  

  

            (37) 

 

Here  𝐼𝑛(. ) is the first kind of modified Bessel function of order 𝑛  and the  parameter 𝐸(. , . ; . )    
appeared in equations (36) and (37) are given by 

                                                                                                                                                    

 

   (38)   

                       

 

 

 

 

 

      (39) 

and   

 
 

where the integral for 𝑚 = 0 is taken to be a principal value of integral for all the singularities 

which satisfies the Helmholtz’s equation and also integrand considered as a function of 

complex variable 𝑧,  has simple poles at  𝑘𝜍𝑑 = ±𝑗𝜋𝑖,    𝑗 = 1,2,3, …, i.e. at 𝑧 = ± 𝑧𝑗 we have 
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where  𝑙𝜋 < 𝑘𝑑 < (𝑙 + 1)𝜋.                 

 

5.  RADIATED VELOCITY POTENTIAL 

 

In order to find radiated velocity potential in identified sub-domain, we solved the 

boundary value problem by using separation of variables and channel multipoles methods as 

given in the above section on basis of Linton and Evans8. Since corresponding to the surge 

motion only, we have only odd multiples of 𝑛  exist because of symmetry about the 𝑂𝑥 axis 

and antisymmetric about 𝑂𝑦  axis. Therefore, the solutions of the boundary-value problem for 

exterior and interior domain are given by 

2 1, 2 1 2 1

0 0 0

( )  ( ) (2 1,2 1; ) ( ) cos(2 1) ,ext

rad m p m n m np n m

m p n

Z z A U r E n p m V r n             (40)  

int

0 2 1,0 2 1 2 1, 2 1

0 1

( )  J ( ) ( )  I ( ) cos(2 1) ,rad n n m n m n m

n m

Z z B kr Z z B r n              (41)                                                                                   

Where 
2 1,p mA   and  

2 1,n mB   are the unknown coefficients which is to be determined by using 

matching conditions and 
np

  is the Kronecker delta function. The radial functions  (.)nS  and  

(.)nT  are given by  

1
, 0,                                                          (42)n m nU r H kr m

                                             (42)                                                                                                                                          
 

, 1, 2,3,...                                                                         (43)n m n mU r K r m                 (43)
 

(2) , 0,                                                                                   (44)n m nV r H kr m
                                      (44)                                                              

 

, 1, 2,3,...                                                                 (45)n m n mV r I r m                 (45) 

 

5.1 Matching conditions  
 

We can have the appropriate matching conditions by means of continuity of pressure 

and that of velocity along the virtual boundaries as depicted in Figure 1. At 𝑟 = 𝑅, i.e., along 

the curved surface of cylinder, extended up to the bottom, we have 
int

1 1

ext

rad rad h z e

                                                                                                       

(46)
                                                                                                                   

int

1 1

1

,         for

 cos ,   for 0 .

radext

rad
h z e

r
r

i e z

                                                                                          

(47)
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         In order to find the unknown coefficients which are present in the expression of the 

radiated velocity potential, we apply these matching conditions and then yields  

 (48)    

 

 

 

 (49) 

 

 

and from other matching conditions gives 

and                 
 

 

     (50) 

Equations (49) and (50) can be rewritten in compact form as follows: 

 

 

             (51) 

 
 

 

where 𝑁(𝜆𝑚, 𝜆𝑙 , −ℎ1, −𝑒1  ) = ∫ 𝑍𝑚(𝑧),   𝑍𝑙(𝑧) 𝑑𝑧,
−𝑒1

−ℎ1
    and  𝑃𝑙 = ∫   𝑍𝑙(𝑧) 𝑑𝑧.

0

−𝑒1
 

The equation (51) can be combined with (48) to give a set of system of linear equations  

 

        (52) 

 

 

 
 

where as  

 

 

 

 

The unknown coefficients 𝐴2𝑛+1,   𝑚  and 𝐵2𝑛+1,   𝑚  can be obtained by solving equations (52)  

and then equation (48). If we truncated the equations by letting  𝑛 = 0,1,2, … … 𝑀 and 𝑙 =
0,1,2, … … 𝑁, then we reached to the system of linear equations having order of  

(𝑀 + 1) (𝑁 + 1) × (𝑁 + 1) (𝑀 + 1). 
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6.  HYDRODYNAMIC COEFFICIENTS  

 

The radiation force 𝐹𝑟1  can be written as  the real part of  𝑋1, where   𝑋1  given by  

𝑋1 = −𝑖 𝜌 𝜔𝑅 ∫ ∫ 𝜉1  [𝜙𝑟𝑎𝑑
𝑒𝑥𝑡   (𝑅, 𝑧) − 𝜙𝑟𝑎𝑑

𝑖𝑛𝑡   (𝑅, 𝑧)] cos 𝜃 𝑑𝑧 𝑑𝜃,
0

−𝑒1

2𝜋

0
                       (53) 

where 𝜉1  is displacement due to surge motion. This radiation force 𝐹𝑟1 can be decomposed 

into components in phase with the acceleration and the velocity of the cylinder in the following 

way 

               

.                                                                                 (54) 

Hence the added mass ( 𝜇11)  and damping coefficients  (𝜆11) are given by 

 (55) 

 

7. CONCLUSION  

 

By the approach of the method of channel multipoles and separation of variables 

techniques, we obtained the  analytical solutions for the radiation problem in surge motion of 

single hollow cylindrical structure in a channel of finite width. We determined the unknown 

coefficients appearing in the radiated velocity potential expressions by using the appropriate 

matching conditions along the physical and virtual boundaries between the identified 

subdomains and then we derived theoretically the hydrodynamics coefficients, i.e., added mass 

and damping coefficients from the expressions of surge radiated potentials in order to know 

the influences of channel wall, different drafts etc. on the hydrodynamic coefficients. Our 

mathematical model can be considered as one kind of wave energy device, i.e., Oscillating 

water column (OWC).  The analytical solutions of the problem may be expected to design the 

proper device in order to extract maximum energy.  
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