Energy and Spectrum of an Undirected Graph $G_{m,n}$

M. Venkata Anusha¹, M. Siva Parvathi*² and S. Uma Maheswari³

1,2Department of Applied Mathematics,
Sri Padmavati Mahila Visvavidyalayam, Tirupati, Andhra Pradesh, INDIA.

3Department of Mathematics,
J.M.J. College for Women, Tenali, Andhra Pradesh, INDIA.
email:anuanusha648@gmail.com, parvathimani2008@gmail.com,
umadhanu.c@gmail.com.

(Received on: June 20, 2019)

ABSTRACT

In this paper the notation of $G_{m,n}$ be a basic simple undirected graph with vertex set $V = I_n = \{1,2,3,\cdots,n\}$ and $u,v \in V$ are adjacent if and only if $u \neq v$ and u+v is not divisible by m, where $m \in N$ and m>1. We have determined the energies and spectrum of the graph $G_{m,n}$.

AMS Subject Classification: 05C50, 05C35.

Keywords: Energy of a graph, Spectrum of a graph, Matrix energy of a graph.

1. INTRODUCTION

The concept of Energy of a Graph was introduced by I. Gutman¹ in 1978. A great variety of graph energies is being considered in the current mathematical chemistry. It can be used to approximate the total π -electron energy of a molecule². This spectrum-based graph invariant has been much studied in both chemical and mathematical literature. Now a day's graph energy is referred to as, closely related to the total π -electron energy calculated within the Huckel molecular orbital approximation³.

Let G be a graph with n vertices and m edges and the adjacency matrix of A(G) of G is defined by its entries as $a_{ij} = 1$, if two vertices are adjacent and 0 otherwise. Let the eigen values of A(G) be $\lambda_1, \lambda_2, \lambda_3, ..., \lambda_n$ where $\lambda_1 \ge \lambda_2 \ge \lambda_3 \ge \cdots \ge \lambda_n$. Then spectral radius λ_1 is the highest eigen value of G. Then we will write $\lambda_i(G)$ instead of λ_i . We know $\det A = \prod_{i=1}^n \lambda_i$. Spectrum is the collection of Eigen values with their multiplicities

 $(m_1, m_2, ..., m_n)$ of an adjacency matrix A(G). If at least one of its eigen value is zero, the graph G is said to be singular and for singular graph $\det A = 0$. All eigen values are different from zero then the graph is non-singular, Then $\det A > 0$. The energy of G is defined to be the sum of absolute values of the eigen values of G and it is denoted by $\mathcal{E}(G)$. i.e., $\mathcal{E}(G) = \sum_{i=1}^{n} |\lambda_i|$, and it is extensively studied by G. Cvetkovia and G.

Nikiforov⁶ generalised the matrix energy of any graph is defined as the sum of singular values of the adjacency matrix of G, and it is denoted by $\mathcal{E}_m(G)$.

2. THE UNDIRECTED GRAPH ON A FINITE SUBSET OF NATURAL NUMBERS AND ITS PROPERTIES

Definition 2.1: Ivy. Chakrabarty⁷ introduced an undirected graph $G_{m,n}$ on a finite subset of natural numbers and proved some basic properties of $G_{m,n}$. Let $G_{m,n}$ be a simple undirected graph with vertex set $V = I_n = \{1,2,3,\cdots,n\}$ and $u,v \in V$ are adjacent if and only if $u \neq v$ and u+v is not divisible by m, where $m \in N$ and m > 1. If m = 1, the graph is disconnected and it forms only isolated vertices. Some of the properties of $G_{m,n}$ are

Lemma 2.1: Let $m, n \in \mathbb{N}$, m, n > 1. Then the graph $G_{m,n}$ is connected.

Lemma 2.2: $G_{m,n} \cong K_3$ if and only if n = 3 and $m \ge 6$.

Lemma 2.3: $G_{m,n}$ is a (n-2)-regular graph for n=m-1, where m is odd.

Lemma 2.4: $G_{m,n}$ is a complete k -partite graph, if n=m-1, where m is odd and $k=\frac{n}{2}$.

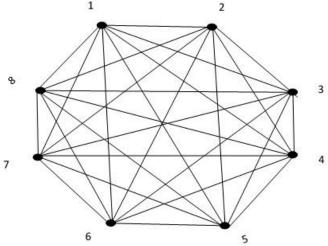
Lemma 2.5: Let $m \ge 2n$. Then $G_{m,n}$ is complete.

3. ENERGY AND SPECTRUM OF A GRAPH $G_{m,n}$:

Definition 3.1: Let $G_{m,n}$ be an undirected graph with n vertices and m be the positive integer > 1 and let $A = (a_{ij})$ be the adjacency matrix of A(G) of G is defined by its entries as $a_{ij} = 1$, if two vertices are adjacent and 0 otherwise and $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \cdots \geq \lambda_n$ are the eigen values of A(G). The spectrum of $G_{m,n}$ is $\begin{pmatrix} \lambda_1 & \lambda_2 & \cdots & \lambda_n \\ m_1 & m_2 & \cdots & m_n \end{pmatrix}$ and the energy is the sum of the absolute values of the eigen values of $G_{m,n}$. i.e., $\mathcal{E}(G_{m,n}) = \sum_{i=1}^n |\lambda_i|$.

Theorem 3.1: The energy of the graph $G_{m,n}$ is 2n-2 if $n \ge 3$ and $m \ge 2n$.

Proof: Let $V = \{1,2,3,...,n\}$ be the vertex set of the graph $G_{m,n}$ where $m,n \in N$ and m > 1. If $n \geq 3$ and $m \geq 2n$, then the graph $G_{m,n}$ is complete and connected.



For the graph, $G_{16,8}$, $\varepsilon(G_{16,8}) = 14$

The adjacency matrix of $G_{m,n}$ graph is an $n \times n$ matrix defined as $A(G_{m,n}) = (a_{ij}) =$ (1, $if u_i$ and v_i are adjacent, 0, otherwise.

Then
$$A(G_{m,n}) = \begin{pmatrix} 0 & 1 & 1 & 1 & \dots & 1 \\ 1 & 0 & 1 & 1 & \dots & 1 \\ 1 & 1 & 0 & 1 & \dots & 1 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 & \dots & 0 \end{pmatrix}_{n \times n}$$

The characteristic equation is $|A - \lambda I| = 0$.

This implies $(\lambda + 1)^{(n-1)} + [\lambda - (n-1)] = 0$. Therefore $Spec(G_{m,n}) = \begin{pmatrix} -1 & n-1 \\ n-1 & 1 \end{pmatrix}$.

Hence the energy of a graph is $\mathcal{E}(G_{m,n}) = \sum_{i=1}^{n} |\lambda_i| = \sum_{j=1}^{2} |\lambda_j| \operatorname{spec}(\lambda_j)$

 $= |\lambda_1| spec(\lambda_1) + |\lambda_2| spec(\lambda_2) = 2n - 2.$

Theorem 3.2: The energy of the graph $G_{m,n}$ is 2n-4 if n=m-1 where m is odd and ≥ 5 .

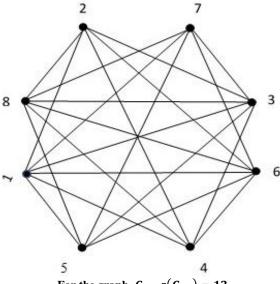
Proof: Let n = m - 1 where m is odd and ≥ 5 .

Let $V = \{m - 1, m - 2, ..., 2, 1\}$ be the vertex set of $G_{m,n}$.

Consider two subsets of V as $V_i = \{m - i, i\}$ and $V_j = \{m - j, j\}$.

Then the vertex m - i is adjacent to m - j,

Because (m-i)+(m-j) is not divisible by m as $(m-j) \neq i$.



For the graph, $G_{9,8}$, $\varepsilon(G_{9,8}) = 12$

The adjacency matrix of the graph
$$G_{m,n}$$
 is $A(G_{m,n}) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & \dots & 1 & 0 \\ 1 & 0 & 1 & \vdots & \vdots & 1 & 0 & 1 \\ 1 & 1 & \ddots & 1 & 1 & \ddots & 1 & 1 \\ 1 & \dots & 1 & 0 & 0 & 1 & 1 & 1 \\ \vdots & \dots & 1 & 0 & 0 & 1 & \dots & \vdots \\ 1 & 1 & \ddots & 1 & 1 & \ddots & 1 & 1 \\ 1 & 0 & 1 & \vdots & \vdots & 1 & 0 & 1 \\ 0 & 1 & 1 & \dots & \dots & 1 & 1 & 0 \end{pmatrix}_{n \times n}$

and the characteristic equation is $\left(\lambda + 2\right)^{\left(\frac{n}{2}-1\right)} + \left(\lambda\right)^{\frac{n}{2}} + \left(\lambda - (n-2)\right) = 0$ and

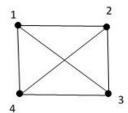
$$Spec(G_{m,n}) = \begin{pmatrix} -2 & 0 & n-2 \\ \frac{n}{2} - 1 & \frac{n}{2} & 1 \end{pmatrix}.$$

Hence the energy $\mathcal{E}(G_{m,n}) = 2n - 4$.

4. MATRIX ENERGY AND SPECTRUM OF A GRAPH $\mathcal{E}_m(G)$:

Definition 4.1: Let A(G) be the adjacency matrix of G and A(G)' be the transpose of A(G). Then A(G)A(G)' is a positive semi definite matrix and the eigen values and singular values of the G are same. The matrix energy of G is denoted by $\mathcal{E}_m(G)$ and is defined as the summation of singular values of A(G).so, the energies $\mathcal{E}(G)$ and $\mathcal{E}_m(G)$ both are same.

Theorem 4.1: The matrix energy of $G_{m,n}$ is 2n-2 if $n \ge 3$ and $m \ge 2n$. **Proof:**



For the graph, $G_{8,4}$, $\varepsilon_m(G_{8,4}) = 6$

Then
$$A(G_{m,n})A'(G_{m,n}) = \begin{pmatrix} n-1 & n-2 & n-2 & \dots & n-2 \\ n-2 & n-1 & n-2 & \dots & n-2 \\ n-2 & n-2 & n-1 & \cdots & n-2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n-2 & n-2 & n-2 & \dots & n-1 \end{pmatrix}_{n \times n}$$

and the characteristic equation is $(\lambda - 1)^{n-1} + [\lambda - (n-1)] = 0$.

Therefore $Spec(G_{m,n}) = \begin{pmatrix} 1 & n-1 \\ n-1 & 1 \end{pmatrix}$ and the singular values are 1, n-1.

Hence the matrix energy of $G_{m,n} = \mathcal{E}_m(G_{m,n})$ =summation of singular values of $A(G_{m,n}) = \sum_{j=1}^{2} |\lambda_j| \operatorname{spec}(\lambda_j) = |\lambda_1| \operatorname{spec}(\lambda_1) + |\lambda_2| \operatorname{spec}(\lambda_2) = 2n - 2$.

Theorem 4.2: The matrix energy of the graph $G_{m,n}$ is 2n-4 if n=m-1 where m is odd and ≥ 5 .

Proof: From theorem 3.2, we have

$$A(G_{m,n}) = \begin{pmatrix} 0 & 1 & 1 & 1 & 1 & \dots & 1 & 0 \\ 1 & 0 & 1 & \vdots & \vdots & 1 & 0 & 1 \\ 1 & 1 & \ddots & 1 & 1 & \ddots & 1 & 1 \\ 1 & \dots & 1 & 0 & 0 & 1 & 1 & 1 \\ \vdots & \dots & 1 & 0 & 0 & 1 & \dots & \vdots \\ 1 & 1 & \ddots & 1 & 1 & \ddots & 1 & 1 \\ 1 & 0 & 1 & \vdots & \vdots & 1 & 0 & 1 \\ 0 & 1 & 1 & \dots & \dots & 1 & 1 & 0 \end{pmatrix}_{n \times n}$$

Then
$$A(G_{m,n})A'(G_{m,n}) =$$

$$\begin{pmatrix}
n-2 & n-4 & n-4 & n-4 & n-4 & \dots & n-4 & n-2 \\
n-4 & n-2 & n-4 & \vdots & \vdots & n-4 & n-2 & n-4 \\
n-4 & n-4 & \ddots & n-4 & n-4 & \ddots & n-4 & n-4 \\
n-4 & \dots & n-4 & n-2 & n-2 & n-4 & n-4 & n-4 \\
\vdots & \dots & n-4 & n-2 & n-2 & n-4 & \dots & \vdots \\
n-4 & n-4 & \ddots & n-4 & n-4 & \ddots & n-4 & n-4 \\
n-4 & n-2 & n-4 & \vdots & \vdots & n-4 & n-2 & n-4 \\
n-2 & n-4 & n-4 & \dots & \dots & n-4 & n-4 & n-2
\end{pmatrix}_{n \times n}$$

and the Characteristic equation is
$$\left(\lambda\right)^{\left(n-\frac{n}{2}\right)}+\left(\lambda-2\right)^{\left(n-\left(\frac{n}{2}+1\right)\right)}+\left(\lambda-(n-2)\right)=0.$$
 And the $Spec(G_{m,n})=\begin{pmatrix}0&2&n-2\\n-\frac{n}{2}&n-\left(\frac{n}{2}+1\right)&1\end{pmatrix}.$ Hence the matrix energy of $G_{m,n}=\mathcal{E}_m(G_{m,n})=2n-4.$

5. REFERENCES

- 1. I. Gutman The energy of a graph. *Ber. Math-Satist. Sekt. Forschungsz. Graz* 103, 1-22 (1978).
- 2. I. Gutman, O.E. Polansky, Mathematical Concepts in Organic Chemistry, Springer, Berlin, (1986).
- 3. I. Gutman, Topology and stability of conjugated hydrocarbons, the dependence of total π -electron energy on molecular topology. *J. Serb. Chem. Soc.* 70, 441–456 (2005).
- 4. D. Cvetkovia, M. Doob. H. Sachs, Spectra of Graphs Theory and Applications, Academic Press New York, (1980).
- 5. I. Gutman, X. Li, Y. Shi, Graph Energy, Springer New York Heidelberg Dordrecht London, (2012).
- 6. V.Nikiforov The energy of a Graphs and matrices, J. Math. Appl, 326, 1472-1475 (2007).
- 7. Ivy. Chakrabarty An undirected graph on a finite subset of natural numbers, *Indian Journal of Discrete Mathematics* 2(1), 128-138 (2015).