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ABSTRACT 

 

 The study of graph embedding is an important topic in 

the theory of parallel computation. The existence of such an 

embedding demonstrates the ability of a parallel computer whose 

interconnection network is described by a guest graph. The 

Petersen graph is certainly one of the most famous objects that 

graph theorists have come across. In this paper, we present an 

algorithm for finding the exact wirelength of the Petersen graph 

P(n, 1), i.e. the circular ladder into the k-rooted complete binary 

trees and binomial trees and prove its correctness using the 

Congestion lemma and Partition lemma. 

 

Keywords: circular ladder, k-rooted complete binary tree, 

binomial trees, wirelength, edge congestion.   

 

1. INTRODUCTION  

 

 Interconnection network plays a key 

role in the design of implementation of 

communication networks. A connection 

pattern of the component in a system is 

called an Interconnection Network or 

Network in short. Due to recent 

developments in parallel and distributed 

computing, the design of analysis of various 

interconnection network has been a main 

topic of research for the past few years. In 

developing a discriminant function for 

evaluating the ’goodness’ of a network, in 

addition to three basic attributes - degree, 

diameter and node disjoint paths, a more 

complex attribute that needs to be 

considered is embeddability. The study of 

graph embedding ia an important topic in the 

theory of parallel computation. The 

existence of such an embedding 

demonstrates the ability of a parallel 

computer whose interconnection network is 

described by a guest graph. The concept of 

graph embedding has proven to be a 

successful one in understanding 

relationships between different architectures. 

The congestion sum or the wirelength of a 
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graph embedding arises from the VLSI 

designs, data structures, data representations, 

networks for parallel computer systems, 

biological models that deal with cloning and 

visual stimuli, parallel architecture, 

structural engineering and so on. 

 There are several results on the 

embedding problem of various architectures 

such as circular wirelength of generalized 

Petersen graphs
11

, trees on cycles
5
, trees on 

stars
22

, hypercubes into grids
2
, complete 

binary tree into grids
16

, grids into grids
19

, 

ladders and caterpillars into hypercubes
4
, 

binary trees into hypercubes
6
, complete 

binary trees into hypercubes
1
, incomplete 

hypercube in books
7
, m-sequencial k-ary 

trees into hypercubes
18

, ternary tree into 

hypercube
9
, enhanced and augmented 

hypercube into complete binary tree
13

, and 

hypercubes into cylinders, snakes and 

caterpillars
14

. 

 In this paper, we present an 

algorithm for finding the exact wirelength of 

circular ladders into the k-rooted complete 

binary trees and binomial trees and prove its 

correctness using the Congestion lemma
15

 

and Partition lemma
15

. 

 

2.  PRELIMINARIES 

 

Definition 2.1.[2] Let G and H be finite 

graphs with n vertices. V (G) and V (H) 

denote the vertex sets of G and H 

respectively. E (G) and E (H) denote the 

edge sets of G and H respectively. An 

embedding f of G into H is defined as 

follows: 
 

(i) f is a injective map from V (G) → V (H) 

(ii) Pf  is an injective map from E (G) to {Pf( 

f (u), f (v)) : Pf( f (u), f (v)) is a path in H 

between f (u) and f (v)}.  

The graph G that is being embedded is 

called a virtual graph or a guest graph and 

H is called a host graph. Some authors use 

the name labeling instead of embedding
1
.  

 

Definition 2.2 [2] The edge congestion of an 

embedding f of G into H is the maximum 

number of edges of the graph G that are 

embedded on any single edge of H. Let ECf  

(G, H(e)) denote the number of edges (u, v) 

of G such that e is in the path Pf  (u, v) 

between f (u) and f (v) in H. In other words, 

ECf (G, H(e)) = ����, �� ∈ ����: 	 ∈  
���, ����  
where Pf  (u, v) denotes the path between f 

(u) and f (v) in H with respect to f. 

The edge congestion problem of a graph G 

into H is to find an embedding of G into H 

that induces EC (G, H).  

 

Definition 2.3. [15] The wirelength of an 

embedding  f of G into H is given by  

���(�,�) = ∑ ����	
�, �	�� =��,�� ∈ �(�)

            ∑ ���	�,�(�)�	 ∈ �(�)  

where ��	�	
�, �(�)� denotes the length of 

the path Pf (u, v) in H. Then the wirelength 

of G into H is defined as,  

�� (�,�) = min���(�,�) 

where the minimum  is taken over all the 

embeddings. 
 

The edge isoperimetric problem
3
 is used to 

solve the wirelength problem when the host 

graph is a path and is NP-complete
8
. The 

following two versions of the edge 

isoperimetric problem of a graph G (V, E) 

have been considered in the literature
3
.  

 

Problem 1: Find a subset of vertices of a 

given graph, such that the edge cut 

separating this subset from its complement 

has minimal size among all subsets of the 
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same cardinality. Mathematically, for a 

given m, if 

 ��(�)  =  ��� 
⊆� ,|
|�|��(�)| 

where  ��(�) =  {(
, �)  ∈  � ∶  
 ∈  �,
� ∉ �}, then the problem is to find � ⊆

 �and |�|  =  �such that ��(�)  =
 |��(�)|. 
 

Problem 2: Find a subset of vertices of a 

given graph, such that the number of edges 

in the subgraph induced by this subset is 

maximal among all induced subgraphs with 

the same number of vertices. 

Mathematically, for a given m, if ��(�)  =

 ��� 
⊆�,|
|�|��(�)|where ��(�)  =

 {(
, �)  ∈  � ∶  
, � ∈  �}, then the problem 

is to find � ⊆  � ��� |�|  =  �such that 

��(�)  =  |��(�)|.  
For a given m, where m= 1, 2, ..., |� |, we 

consider the problem of finding a subset A of 

vertices of G such that |�|  =  �and 

|��(�)|  =  ��(�). Such subsets are called 

optimal with respect to Problems 1. We say 

that optimal subsets are nested if there exists 

a total order O on the set V such that for any 

m= 1, 2, ...,n, the collection of the first m 

vertices in this order is an optimal subset. In 

this case, we call the order O an optimal 

order
3
.This implies that ��(�,��)  =

 ∑ ��(��
�� ), where �� is a path on n 

vertices. Again, a subset A of vertices of G 

such that |�|  =  �and ��(�)  =  |��(�)|is 

said to be optimal with respect to Problems 

2. 

 

Notation: ECf (G,H(e)) will be represented 

by ECf (e). For any set S of edges of H, ECf 

(S) =∑ ���(�).	∈�  

 

Lemma 2.4.(Congestion lemma) [15] Let G 

be an r-regular graph and f be an embedding 

of G into H. Let S be an edge cut of H such 

that the removal of edges of S leaves H into 

2 components H1 and H2 and let G1 = f
−1

(H1) 

and G2 = f
−1

(H2). Also S satisfies the 

following conditions: 

(i) For every edge (�, �)  ∈  �� , � =  1, 2,

��  �� 	��, � 	�� has no edges in S. 

(ii) For every edge (�, �) in G with � ∈

��and � ∈  ��, ��  (� (�), � (�)) has exactly 

one edge in S. 

(iii) G1 is a maximum subgraph on k vertices 

where k = |V(G1)|. 

Then ECf (S) is minimum and ECf (S) = 

�� −  2 |�(��)|.  
 

Lemma 2.5.(Partition lemma) [15] Let f : 

G→ H be an embedding. Let {S1, S2, ...,Sp} 

be a partition of E(H) such that each Si is an 

edge cut of H. Then, 

���(�,�)  =  ����(��).

�

��� 

 

 
3.  PETERSEN GRAPHS 

 

 In 1950 a class of generalized 

Petersen graphs was introduced by Coxeter 

and around 1970 popularized by Frucht, 

Graver and Watkins. The Petersen graph is 

certainly one of the most famous objects that 

graph theorists have come across. This graph 

is a counter example to many conjectures: 

for example, it is not 1-factorizable despite 

being cubic and without bridges (Taits 

conjecture), and it is not hamiltonian. But 

being 3-transitive (that is, its automorphism 

group is transitive on directed paths of 

length 3), it is highly symmetric; however, it 

is not a Cayley graph! Many additional facts 

about the Petersen graph can be found in
12

. 

The Petersen graph appeared in the chemical 



485 Jasintha Quadras, et al., J. Comp. & Math. Sci. Vol.5 (6), 482-489 (2014) 

Journal of Computer and Mathematical Sciences Vol. 5, Issue 6, 31 December, 2014 

literature as the graph that depicts a 

rearrangement of trigonal bipyramid 

complexes XY 5 with five different ligands 

when axial ligands become equatorial and 

equatorial ligands become axial. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Circular ladder P(8, 1) 

Definition 3.1. [24] The generalized 

Petersen graph P(m, n), 1 ≤ m ≤ n−1 and n ≠ 

2m, consists of an outer n-cycle u1, u2, …, 

un, a set of n spokes (ui, vi), 1 ≤ i≤ n, and n 

inner edges (vi, vi+m) with indices taken 

modulo n. It is a 3-regular graph and 

contains 2n vertices and 3n edges. See 

Figure 1. 
 

Parallel labeling [11]. For 1 ≤ i ≤ n, we call 

the vertices ui and vi of P(m, n) as outer rim 

and inner rim vertices respectively and label 

the vertices ui and vi as 2i−2 and 2i−1 

respectively. We call this labeling as parallel 

labeling of the generalized Petersen graph 

P(m, n). 

We know that the generalized Petersen 

graph P(n, 1), n≥ 3 is the circular ladder K2× 

Cn. 

 

In this paper we consider the generalized 

Petersen graph P(n, 1), n≥ 3 for our 

discussion. 

Theorem 3.2. [11] The number of edges in a 

subgraph induced by any set of k vertices of 

P(n, 1), 3 ≤ k≤ n is atmost k + ⌊k/2⌋ − 2 for 

n> 3 . 

 

Theorem 3.3. [11] Let H be a subgraph of 

P(n, 1) induced by k vertices, 3 ≤ k ≤ n such 

that, 

(i) if k is even, the labels of the k vertices are 

{i + 1, i + 2, …, i + k} and 

(ii) if k is odd, the labels of k−1 vertices are 

{i +1, i +2, …, i +k−1} and the k
th
 vertex is 

the vertex labeled i− 1, i, i + k, or i + k + 

1where i is odd and the labels are taken 

modulo 2n. Then H is a maximum subgraph 

of P(n, 1), n ≥ 3. 
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Figure 2: 1- rooted complete binary tree  ��
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4. WIRELENGTH OF CIRCULAR  

    LADDERS INTO THE k-ROOTED  

    COMPLETE BINARY TREES 

 

 Complete binary trees are perfectly 

balanced and have the maximum possible 

number of nodes, given their height. 

However, they exist only when n is one less 

than a power of 2. For any non-negative 

integer n, the complete binary tree of height 

n, denoted by Tn, is the binary tree where 

each internal vertex has exactly two children 

and all the leaves are at the same level. Thus 
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a complete binary tree Tn has n levels and 

level i, 1 ≤ i ≤ n, contains 2
i
 − 1 vertices. 

Thus Tn has exactly 2
n
 − 1 vertices. 

 

Definition 4.1. [10] The 1-rooted complete 

binary tree  �� is obtained from a complete 

binary tree Tn by attaching to its root a 

pendant edge. The new vertex is called the 

root of   �� and is considered to be at level 0. 

The k-rooted complete binary tree  �� is 

obtained by taking k vertex disjoint 1-rooted 

complete binary trees  �� on 2
n
 vertices with 

roots say r1, r2, …, rk and adding the edges 

(ri , ri +1), 1 ≤ i ≤ k − 1. See Figure 2(a). 

 

Definition 4.2. [26] Let T be a tree having 

root r with sons v1, v2, …, vk, k ≥ 0. In the 

case k = 0, the tree consists of a single vertex 

r. For a binary tree, an inorder traversal is 

defined recursively as follows: (i) Visit in 

inorder the left subtree of the root r (if it 

exists). (ii) Visit the root r.      (iii) Visit in 

inorder the right subtree of r (if it exists). 

 

Embedding Algorithm A 

 

Input : A generalized Petersen graph P(2
n−1 

, 

1) and a 1-rooted complete binary tree  �� 

where n > 3. 

 

Algorithm : Label the vertices of P(2
n−1 

, 1) 

using parallel labeling. Label the vertices of 

 �� as  0, 1, ..., n − 1 using inorder labeling. 

 

Output : An embedding f of  P(2
n−1 

, 1) into 

 �� given by f (x) = x with minimum 

wirelength. 
 

Proof of correctness : For j = 1, 2, …, n and 

i = 1, 2, …, 2
n - j 

, let ������ be the cut edge of 

the  1-rooted complete binary tree  ��, which 

has one vertex in level n − j and the other 

vertex in level n − j + 1, such that ������ 

disconnects  �� into two components !����� 

and !"����� where  V (!�����) is {2 
j
 (i − 1), 2 

j
 

(i − 1) + 1, 2 
j
 (i − 1) + 2, · · ·, 2 

j
 (i − 1) + (2 

j
 − 2)}. Let ������ and �#����� be the inverse 

images of !����� and !"����� under f 

respectively. By Theorem 3.3 (ii), ������ is 

an optimal set in P(2
n−1 

, 1). Thus the cut 

edge ������ satisfies conditions (i), (ii) and 

(iii) of the Congestion Lemma.  Therefore, 

ECf (������) is minimum for j = 1, 2, …, n 

and i = 1, 2, …, 2 
n - j

 . The Partition Lemma 

implies that the wirelength is minimum.  

 

Theorem 4.3. The exact wirelength of a 

generalized Petersen graph P(2
n−1 

, 1) into 

the 1-rooted complete binary tree  �� is given 

by, 
WL(P(2

n−1 
 , 1), ��� ) = 27 (2

n −3 
 ) + 3 +  ∑���

��� 2 

n − j
 [3(2 

j
 − 1) – 2 (2 

j
 + ��

���

�
� − 3)] 

 

Embedding Algorithm B 
 

Input : A generalized Petersen graph P(2
n−1

, 

1) and a k-rooted complete binary tree  ��

� , 

where  n ≥ n1, n, n1 > 3, k = 2 
n−n

1. 
 

Algorithm : Label the vertices of P(2
n−1

 , 1) 

using parallel labeling. Label the vertices of 

 ��

� , n ≥ n1, n, n1 > 3, k = 2
n−n

1 as follows: Let 

 ��

�,�
,  ��

�,�
, …,  ��

�,� 
 be the k vertex  disjoint 

1-rooted complete binary trees of  �� . Label 

the vertices of  ��

�,�
 , 1 ≤ i ≤ k, using inorder 

labeling from     (i − 1) 2
n
1 to i2

n
1 − 1. 

 

Output : An embedding f of P(2
n−1

 , 1) into 

 ��

�  given by f (x) = x with minimum 

wirelength. 
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Proof of correctness : For i = 1, 2, …, 2
n−n

1, 

let �����  be the cut edge of the k-rooted  

omplete binary tree  ��

� , which has one 

vertex in level n - j and the other vertex in 

level n - j + 1, such that �����  disconnects 

 ��

�  into two components !����  and 

!"����where V (!����) is {2��(i-1), 2��(i-1) + 

1, 2��(i − 1) + 2, · · ·, 2�� (i − 1) + (2�� − 

1)}. Let �����  and �#����  be the inverse 

images of !����  and !"����  under f 

respectively. By Theorem 3.3 (ii), �����  is an 

optimal set in P(2
n−1

 , 1). Thus the cut edge 

�����  satisfies conditions (i), (ii) and (iii) of 

the Congestion Lemma. Therefore,           

ECf (�����  ) is minimum for i = 1, 2, …, 2
n−n

1. 

The Partition Lemma implies that the 

wirelength is minimum.  

 By the proof of the Embedding  

Algorithm  A and the discussion above, it is 

sufficient to prove that the cut edge (ri , 

ri+1), 1 ≤ i ≤ k − 1, where ri is the root of 

 ��

�,�
 , 1 ≤ i ≤ k, has minimum edge 

congestion. The cut edge (ri , ri+1), 1 ≤ i ≤ k 

− 1, of  ��

� , disconnects  ��

�  into two   

components Xi and !"� where V (Xi) = {0, 1, 

· · ·, i2 
n
1 − 1}. Let Gi and �#�  be the inverse 

images of Xi and !"�under f respectively. By 

Theorem 3.3 (ii), Gi is an optimal set in 

P(2
n−1

 , 1). Thus the cut edge (ri , ri+1), 1 ≤ i 

≤ k − 1, satisfies conditions (i), (ii) and (iii) 

of the Congestion Lemma. Therefore, ECf 

((ri , ri+1)) is minimum for i = 1, 2, …, k −1. 

The Partition Lemma implies that the 

wirelength is minimum. 
 

Theorem 4.4. The exact wirelength of a 

generalized Petersen graph P(2
n−1

 , 1) into 

the k-rooted complete binary tree  ��

�  is 

given by, 

WL(P(2
n−1

 , 1),  ��

� ) = 27 (2
n −3 

) + 3 +  

∑���
��� 2 

n − j
 [3(2 

j
 − 1) – 2 (2 

j
 + $����

�
% − 

3)] + 4(k − 1). 

 

5. WIRELENGTH OF CIRCULAR  

     LADDERS INTO BINOMIAL TREES 

 

Definition 5.1. [10] A binomial tree B0 of 

height 0 is a single vertex. For all n > 0, a 

binomial tree Bn of height n is a tree formed 

by joining the roots of two binomial trees of 

height n − 1 with  a new edge and 

designating one of these roots to be the root 

of the new tree. A binomial tree of height n 

has 2
n
 vertices. 
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Figure 3: Binomial Tree B4 

Embedding Algorithm C  

 

Input : A generalized Petersen graph P(2
n−1

, 

1) and the binomial tree Bn. 
 

Algorithm : Label the vertices of P(2
n−1 

, 1) 

using parallel labeling. Label the vertices of 

Bn as 0, 1, ..., n − 1 as shown in Figure 3. 

 

Output : An embedding f of P(2
n−1 

, 1) into 

Bn  given by f(x) = x with minimum 

wirelength. 
 

Proof of correctness : For j = 1, 2, …, n and 

i = 1, 2, · · ·, 2 
n−j

 , let ������ = {(2 
j −1 

(2i − 

1), 2 
j −1 

 (2i−2))} be the cut edge of Bn such 

that ������ disconnects Bn into two 



 Jasintha Quadras, et al., J. Comp. & Math. Sci. Vol.5 (6), 482-489 (2014) 488 

Journal of Computer and Mathematical Sciences Vol. 5, Issue 6, 31 December, 2014 

components !����� and !"����� where V 

(!�����) is {2 
j −1

 (2i − 1), 2 
j −1

 (2i − 1) + 1, 2 
j −1

 (2i − 1) + 2, · · ·, 2 
j −1

 (2i − 1) + (2 
j 

−1
−1)}.  Let ������ and �#����� be the inverse 

images of !����� and !"����� under f 

respectively. By Theorem 3.3 (ii), ������ is 

an optimal set in P(2
n−1 

, 1). Thus the cut 

edge ������ satisfies conditions (i), (ii) and 

(iii) of the Congestion Lemma. Therefore, 

ECf (������) is minimum for       j = 1, 2, …, 

n and i = 1, 2, …, 2 
n − j

 . The Partition 

Lemma implies that the wirelength is 

minimum. 

 

Theorem 5.2. The exact wirelength of a 

generalized Petersen graph P(2
n−1 

, 1)  into 

the binomial tree Bn is given by, 
 

WL(P(2
n−1 

, 1), Bn) = 3 (2
n −1

) + 4 +  

∑���
��� 2 

n − j
 [3(2 

j
 
− 1

) - 2 
j
  − 2 

j - 1
 + 4] 

 

6. CONCLUSION 

 

 In this paper, we have found the 

exact wirelength of the circular ladder into 

certain types of trees. Finding the exact 

wirelength of variety of such trees by 

varying the guest graph would be of great 

interest. 
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